Three numbers are in GP, whose sum is 13 and the sum of whose squares is 91. Find the numbers.
Let the numbers in GP be a, ar and ar2.
Given, sum of numbers = 13⇒ a+ar+ar2=13
⇒ a(1+r+r2)=13 ...(i)
and sum of the squares = 91
⇒ a2+a2r2+a2r4=91
⇒ a2(1+r2+r4)=91
⇒ a2(1−r+r2)(1+r+r2)=91 [∵ 1+r2+r4=(1−r+r2)(1+r+r2)]
⇒ a(1−r+r2)a(1+r+r2)=91
⇒ a(1−r+r2)×13=91 [from Eq. (i)]
⇒ a(1−r+r2)=7...(ii)
On dividing Eq. (i) by Eq. (ii), we get
1+r+r21−r+r2=137
⇒ 7+7r+7r2=13−13r+13r2
⇒ 6r2−20r+6=0
⇒ 3r2−10r+3=0
⇒ (3r−1)(r−3)=0
⇒ r=3 or r=13
when r = 3, then from Eq. (i), we have
a(1+3+32)=13 ⇒ a=1
and when r=13, then from Eq. (i), we have
a(1+13+132)=13 ⇒ a=9
So, the numbers are 1, 3 and 9 or 9, 3 and 1.