Three rods of equal length l are joined to form an equilateral ΔPQR. O is the midpoint of QR. Distance OP remains same for small changes in temperature. If the coefficient of linear expansion for PQ and PR is α2 and for QR is α1, then
A
α2=3α1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
α2=4α1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
α1=3α2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
α1=4α2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is Dα1=4α2
Given that PQ=QR=RP=l
In ΔPQO, PO=√PQ2−QO2 =√l2−(l2)2 =√32l
Let ΔT be the change in temperature.
After thermal expansion
So, PQ′=PQ+Δ(PQ)=l+α2ΔTl PR′=PR+Δ(PR)=l+α2ΔTl QR′=QR+Δ(QR)=l+α1ΔTl
So, PO′=√(PQ′)2−(QR′2)2=√(l+α2ΔTl)2−(l+α1ΔTl2)2
But given, PO=PO′=√32l ⇒PO′=PO=√3l2=√(l+α2ΔTl)2−(l+α1ΔTl2)2 ⇒34l2=l2+(α2ΔTl)2+(2α2ΔTl2)−{l2+(α1ΔTl)2+(2l2α1ΔT)4} [(α1ΔTl)2] and (α2ΔTl)2can be neglected] ⇒34l2=l2+2α2ΔTl2−l24−2l2α1ΔT4 ⇒α1=4α2