The correct option is B (k−1)(k−2)432
given3≤K≤8K=3canbeonlywhen1appearsoneachdieP(K=3)=16×16×16=1216P(K=4)=(31)×16×16×16=3216{permutationof1,1,2onthedice}P(K=5)=(31)×16×16×16+(31)×16×16×16=6216{permutationof3,1,1and2,2,1onthedice}P(K=6)=(31)×16×16×16+3!×16×16×16+16×16×16=10216{permutationof1,1,41,2,3and2,2,2onthedice}observingthepatterninnumeratorofP(K)wecanwriteP(K=7)=15216P(K=8)=21216ThenumeratorofP(K)is1,3,6,10,15,21sowecanwritegeneraltermforthiswhen3≤K≤8LetS=1+3+6+........+Tn−1+Tn⇒S=1+3+.........+Tn−2+Tn−1+TnsubtractingtheabovetwoequationsandrearrangingwegetTn=1+2+3+......+n⇒Tn=n×(n+1)2nowputtingK=n+2⇒n=K−2∵Kstartswith3Tk=(K−2)×(K−1)2whichisthegeneraltermfornumeratorofP(K)∴P(K)=Tk216=(K−2)×(K−1)432