Let the numbers be x, y and z
∴y=2xzx+zory(x+z)=2xz ...(1)
Againx2,y2,z2 are in A.P.
2y2=x2+z2=(x+z)2−2xz
2y2=(x+z)2−y(x+z),by(1)or
or (x+z)2−y(x+z)−2y2=0
∴x+z=y±√y2+8y22
or x +z = 2y or -y
Case(I) x + z = 2y .....(2)
Eliminate y between (1) and (2)
(x+z)2=4xz
or (x−z)2=0∴x=z
Above is not true as the numbers are distinct.
Case (II) x + z = -y ...(3)
Eliminate y between (1) and (3)
−(x+z)2=2xz
∴,x2+4xz+z2=0or(xz)2+4xz+1=0
∴xz=−2±√3
Choose xz=−2+√3
∴From(3),−y2=1+xz=−1+√3
or yz=1−√3
x√3−2=y1−√3=z1 ....(4)
Similarly if xz=−2−√3thenyz=1+√3
∴x−(√3−2)=y1−√3=z1
The given ratio 1−√3:−2:1+√3 is same
or 1−√31+√3:−21+√3:1=4−2√31−3:−2(1−√3)1−3:1
=√3−2:1−√3:1 same as (4) etc.
Again taking xz=−2−√3, we will get the second answer