Three vertices of a parallelogram ABCD are A(3, −1, 2) B(1, 2, −4) and C(−1, 1, 2). Find the coordinates of the fourth vertex.
Let D(x, y, z) be the fourth vertex of parallelogram ABCD.
We know that diagonals of a parallelogram bisect each other. So the mid points of AC and BD coincide.
∴ Coordinates of mid point of AC
(3−12,−1+12,2+22)
= (1,0,2)
Also coordiantes of mid point of BD
(x+12,y+22,z−42)
∴ x+12=1 ⇒ x+1=2 ⇒ x=1
y+22=0 ⇒ y+2=0 ⇒ y=−2
z−42=2 ⇒ z−4=4 ⇒ z=8
Thus the coordinates of point D are (1, −2, 8).