The correct option is B r52fgh where OP=r
Here OP=√f2+g2+h2=r
Therefore D.R's of OP are
f√f2+g2+h2,g√f2+g2+h2,h√f2+g2+h2 or fr,gr,hr
Since OP is normal to the plane, therefore equation of plane is
frx+gry+hrz=r⇒fx+gy+hz=r2
∴A=(r2f,0,0),B=(0,r2g,0),C=(0,0,r2h)
Now area of △ABC
△=√A2xy+A2yz+A2zx
where A2xy is projecton of △ABC on
xy plane − area of △AOB
Now Axy=12∣∣
∣
∣
∣∣r2f010r2g1001∣∣
∣
∣
∣∣=r42|fg|
Similarly Ayz=r42|gh| and Azx=r42|hf|
∴△=√A2xy+A2yz+A2zx=r52fgh