x−4cosθ=y−1sinθ=r=112√2
It meets the line 3x−y=0
∴1r=3cosθsinθ3.4−1=2√211
sinθ=(2√2+3cosθ)
1−cos2θ=8+12√2cosθ+9cos2θ
or 10−cos2θ+12√2cosθ+7=0
∴cosθ=−12√2±√(288−280)20
cosθ=−1√2 or −7√210 then from (1)
sinθ=1√2 or −√210
∴tanθ=−1,17
∴ Lines are x+y=5 and x−7y+3=0