We have,
Equation of tangent
y2=4ax at point (at2,2at)
Now
yt=x+at2
⇒x−yt+at2=0.....(1)
Then, length of perpendicular from O(0,0) is
OP=∣∣ ∣∣x−yt+at2√1+t2∣∣ ∣∣
OP=∣∣ ∣∣0x−0t+at2√1+t2∣∣ ∣∣
OP=∣∣ ∣∣at2√1+t2∣∣ ∣∣
Now, Equation of perpendicular to (1) is,
tx+y=k
It passes through (0,0)
Now,
0+0=k
⇒k=0
Then,
tx+y=0
⇒y=−tx.....(2)
Put in equation of parabola
y2=4ax
⇒t2x2=4ax
⇒x=4at2
From equation
y=−tx
y=−t4a2t2=−4at
Hence, Q=(4at2,−4at)
Using distance formula
OQ=√(4at2−0)2+(−4at−0)2
=4a√1t4+1t2
=4a√1+t2t4
OP.OQ=at2√1+t24at2√1+t2=4a2
Hence, this is the answer.