In the given expression, there are multiple parentheses. Hence we go for the innermost parentheses.
While evaluating the expression inside parentheses, we follow the PEMDAS rule.
[(14÷2×3)+16×(7−7)+16−14÷7+15]÷2×10
=[(7×3)+16×(7−7)+16−14÷7+15]÷2×10
=[21+16×(7−7)+16−14÷7+15]÷2×10
We move to the following innermost parentheses expression.
[21+16×(7−7)+16−14÷7+15]÷2×10
=[21+16×0+16−14÷7+15]÷2×10
Now, the square brackets have multiple operations.
Hence, we follow the PEMDAS rule to solve the expression inside it.
[21+16×0+16−14÷7+15]÷2×10
=[21+0+16−14÷7+15]÷2×10
=[21+0+16−2+15]÷2×10
Now the expression inside square brackets has addition operations. We move from left to right.
[21+0+16−2+15]÷2×10
=[21+16−2+15]÷2×10
=[37−2+15]÷2×10
=[35+15]÷2×10
=50÷2×10
Now the resulting expression has only multiplication and division operations.
50÷2×10
=25×10
=250