wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

To draw a pair of tangents to a circle which are inclined to each other at an angle of 35°, it is required to draw tangents at the end points of those two radii of the circle, the angle between which is
(a) 105°
(b) 70°
(c) 140°
(d) 145°

Open in App
Solution




PA and PB are two tangents drawn from P to circle with centre O.

∠APB = 35°

Now,

∠OAP = 90° (Radius is perpendicular to the tangent at the point of contact)

∠OBP = 90° (Radius is perpendicular to the tangent at the point of contact)

In quadrilateral OAPB,

∠AOB + ∠OAP + ∠OBP + ∠APB = 360º (Angle sum property of quadrilateral)

⇒ ∠AOB + 90º + 90º + 35º = 360º

⇒ ∠AOB = 360º − 215º = 145º

Thus, in order to draw a pair of tangents to a circle which are inclined to each other at an angle of 35°, it is required to draw tangents at the end points of those two radii of the circle, the angle between which is 145º.

Hence, the correct answer is option (d).

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Tangents- Definition
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon