wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

To Prove : -
sin3x+sin3(2π3+x)+sin3(4π3+x)= 34sin3x

Open in App
Solution

L.H.S.= sin3x+sin3(2π3+x)+sin3(4π3+x) = 14(3sinxsin3x)+14(3sin(2π3+x)sin3(2π3+x))+14(3sin(4π3+x)sin3(4π3+x))
[Since, sin3x= 14(3sinxsin3x) ]
= 14[3sinxsin3x+3sin(2π3+x)sin(2π+3x)+3sin(4π3+x)sin(4π+3x)]
= 14[3sinxsin3x+3sin(2π3+x)sin(3x)+3sin(4π3+x)sin(3x)]
= 14[3sinx3sin3x+3(2sin(2π+2x2)cos(2π6)]
[ Since, (sinA+sinB)=2sin(A+B2)cos(AB2)]
= 14[3sinx3sin3x+3(2sinx(12)]
= 14[3sinx3sin3x3sinx]
= 34sin3x
= R.H.S.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration
PHYSICS
Watch in App
Join BYJU'S Learning Program
CrossIcon