To the given figure, BC is parallel to DE Area of triangle ABC=25cm2,
Area of trapezium BCED =24cm2 and DE =14 cm.
The length of BC =
In ΔADE,BC||DE
Area of ΔABC=25cm2
and area of trapezium BCED =24cm2
Area of ΔADE=25+24=49cm2
DE =14 cm, Let BC = x cm
Now in ΔABC and ΔADE,
∠ABC=∠ADE (corresponding angles)
∠A=∠A (common)
∴ΔABC∼ΔADE (AA postulate)
∴areaΔABCareaΔADE=BC2DE2⇒2549=BC2(14)2
⇒BC2=25×14×1449=100=(10)2
∴BC=10cm.