The correct option is
C 12Given that,
16sin2x+16cos2x=10 ....(1)
Take 16sin2x=t
then, 16cos2x=161−sin2x=1616sin2x=16t
Therefore, 16cos2x=16t
Substituting these values in (1) we get,
⇒t+16t=10
⇒t2+16=10t
⇒t2−10t+16=0
⇒t2−2t−8t+16=0
⇒t(t−2)−8(t−2)=0
⇒(t−2)(t−8)=0
⇒t=2,t=8
⇒16sin2x=2 or 8
⇒16sin2x=1614 or 1634
⇒sin2x=14 or 34
⇒sinx=±12 , ±√32
Now in [0,3π]
sinx=12, then x=π6 , 5π6 , 13π6 , 17π6
sinx=−12, then x=7π6 , 11π6
sinx=√32, then x=π3 , 2π3 , 7π3 , 8π3
sinx=−√32, then x=4π3 , 5π3
Hence, there will be 12 solutions in all