The correct option is B 6
cosxcos2xcos3x=14(2cosxcos3x)cos2x=12(cos2x+cos4x)cos2x=12Letcos2x=2[cos4x=2cos22x−1]Now,(t+2t2−1)t=122t(2t2+t−1)=14t3+2t2−2t−1=02t2(2t+1)−(2t−1)=0(2t2−1)(2t+1)=0So,t=−12t=±1√2From′t′=−12cos2x=−12⇒2x=2π3,4π3Andfromt=±1√2cos2x=1√2⇒2x=π4,7π4x=π8,7π8Now,cos2x=−1√22x=3π4,5π4⇒π8,π3,3π8,5π8,2π3,7π8thereare6solutions.Hence,optionBiscorrectanswer.