Total number of values of x, satisfying (√3+1)2x+(√3−1)2x=23x, is equal to
1
(√3+1)2x+(√3−1)2x=23x=(2√2)2x
⇒(√3+12√2)2x+(√3+12√2)2x=1
⇒(2+√34)x+(2−√34)x=1
⇒x=1 is a solution.
Also 0<2+√34<1, 0<2−√34<1
∴ If x>1,(2+√34)x<2+√34,(2−√34)x<2−√34
⇒(2+√34)x+(2−√34)x<1
∴ if x<1,(2+√34)x+(2−√34)x>1
Hence, x=1 is the only solution.