x2−2xycos2α+y2=a2a=1,b=1,h=−cos2αtan2θ=2ha−btan2θ=−2cos2α1−1=∞2tanθ1−tan2θ=∞⇒1−tan2θ=0tanθ=±1θ=45∘,135∘
is the required location of the axes.
Converting the equation in polar form
x=rcosθ,y=rsinθr2(cos2θ−2sinθcosθcos2α+sin2θ)=a2(cos2θ+sin2θ)r2=a2cos2θ+sin2θcos2θ−2sinθcosθcos2α+sin2θr2=a21+tan2θ1−2tanθcos2α+tan2θtanθ1=1r12=a21+11−2cos2α+1⇒r1=a√11−cos2αtanθ2=−1r22=a21+11+2cos2α+1r2=a√11+cos2α
The magnitude of semi axes is given by r1 and r2
Hence the central conic can be traced.