is the required location of axes.
converting the equation in polar from
x=rcosθ,y=rsinθr2(cos2θ−2sinθcosθcsc2α+sin2θ)=a2(cos2θ+sin2θ)r2=a2cos2θ+sin2θcos2θ−2sinθcosθcsc2α+sin2θr2=a21+tan2θ1−2tanθcsc2α+tan2θtanθ1=1r12=a21+11−2csc2α+1⇒r1=a√11−csc2αtanθ2=−1r22=a21+11+2csc2α+1r2=a√11+csc2α
The magnitude of semi axes is given by r1 and r2
Hence the central conic can be traced.