16x2−24xy+9y2−5x−10y+1=0
(4x−3y)2=5x+10y−1
Introducing a variable λ
(4x−3y+λ)2=5x+10y−1−6λy+8λx+λ2
(4x−3y+λ)2=(5+8λ)x+(10−6λ)y+λ2−1
4x−3y+λ=0.......(i)
(5+8λ)x+(10−6λ)y+λ2=0.......(ii)
For λ we assume both lines to be perpendicular
Let slope of (i) be m and (ii) be m′
m=−4−3=43m′=−5+8λ10−6λ
mm′=−1
43×−5+8λ10−6λ=−1
20+32λ=30−18λ
⇒λ=15
(4x−3y+15)2=(5+8.15)x+(10−6.15)y+152−1
(4x−3y+15)2=335x+445y−2425
(4x−3y+15)2=115(3x+4y−2455)
⎛⎜ ⎜ ⎜⎝4x−3y+155⎞⎟ ⎟ ⎟⎠2=1125⎛⎜ ⎜ ⎜⎝3x+4y−24555⎞⎟ ⎟ ⎟⎠
Y=4x−3y+155,X=3x+4y−24555
Y2=1125X
Comparing with standard equation of parabola
4a=1125
⇒a=11100