The correct option is D 3(θ2−θ1)=+θ1
Given that,
Initial speeds of two particles are v1 and v2, angles of projection are θ1 and θ2 respectively.
From the figure, we can deduce that
Maximum height of particle−1 (H1)=v21sin2θ12g
⇒10=v21sin2θ12g .........(1)
Range of particle−1 (R1)=v21sin2θ1g
⇒40=v21sin2θ1g ........(2)
From (1) and (2) we get
14=sinθ14cosθ1⇒tanθ14=14
⇒tanθ1=1⇒θ1=45∘
Substituting this in equation (2), we get, v21=400⇒v1=20 m/s
Similarly, for second particle,
Maximum height of particle−2 (H2)=v22sin2θ22g
⇒15=v22sin2θ22g .........(3)
Range of particle−2 (R2)=v22sin2θ2g
⇒20√3=v22sin2θ2g .......(4)
From (3) and (4) we get
√34=sinθ24cosθ2⇒tanθ2=√3⇒θ2=60∘
Substituting this in (3) we get,
15=v22×sin260∘2×10
⇒v22=400⇒v2=20 m/s
Therefore, we can conclude that, v1=v2 and 3(θ2−θ1)=+θ1.
Options (c) and (d) are correct.