xa+yb=1 .....(1) where a>0,b>0
√1a2+1b2=√a2+b2a2b2=√a2+b2ab
Divide (1) through out by √a2+b2ab
⇒xa√a2+b2ab+yb√a2+b2ab=1√a2+b2ab
⇒x(b√a2+b2)+y(a√a2+b2)=aba2+b2 .......(1)
Slope of (1) is given by
tanα=−1a1b=−ba which is negative, hence α is obtuse.
tanα=−ba=perpendicularbase
Hypotenuse=√(base)2+(perpendicular)2=√a2+b2
For obtuse angles sin is positive and cos is negative
sinα=b√a2+b2 and cosα=−b√a2+b2
Hence, (1) becomes
x(−cosα)+y(sinα)=ab√a2+b2
We know that sinA=sin(π−A) and cosA=−cos(π−A)
⇒xcos(π−α)+ysin(π−α)=−ab√a2+b2 which is the required normal form where tanα is slope of given line.
hence right hand side must give perpendicular distance of the straight line from the origin.
⇒p=ab√a2+b2
⇒p2=a2b2a2+b2
⇒1p2=a2+b2a2b2
⇒1p2=1a2+1b2
hence proved.