xa+yb=1.......(i),a>0, b>0√1a2+1b2=√a2+b2a2b2=√a2+b2ab
Divide (i) throughout by √a2+b2ab
xa√a2+b2ab+yb√a2+b2ab=1√a2+b2ab
xb√a2+b2+ya√a2+b2=ab√a2+b2...........(ii)
Slope of (ii) is given by
tanα=−Coefficient of xCoefficient of y
=−1a1b=−ba which is negative, hence α is obtuse
tanα=−ba=PerpendicularBase
Hypotenuse=√Base2+Perpendicular2=√a2+b2
For obtuse angles sin is positive and cos is negative
sinα=b√a2+b2
cosα=−b√a2+b2
Hence (ii) will become
x(−cosα)+y(sinα)=ab√a2+b2
We know that
sin(A)=sin(π−A)
and cos(A)=−cos(π−A)
⇒xcos(π−α)+ysin(π−α)=ab√a2+b2
Which is the required normal form where tanα is slope of given line
Hence right hand side must give perpendicular distance of the straight line from the orogin.
⇒P=ab√a2+b2
⇒P2=a2b2a2+b2
⇒1P2=a2+b2a2b2
⇒1P2=a2a2b2+b2a2b2
⇒1P2=1a2+1b2