To change one set of coordinate axes inclined at an angle ω to another system at ω′ and origin remain unchanged we substitute
xsinω=x′sin(ω−θ)+y′sin(ω−ω′−θ)ysinω=x′sinθ+y′sin(ω′+θ)
Bisector of angle will make angle 30∘ and 120∘ with the axis
So here ω=60∘,ω′=90∘ and θ=30∘
⇒xsin60∘=x′sin(60∘−30∘)+y′sin(60∘−90∘−30∘)⇒√32x=12x′−√32y′⇒x=x′√3−y′.......(i)
Also, ysin60∘=x′sin30∘+y′sin(90∘+30∘)
⇒√32y=12x′+√32y′⇒y=x′√3+y′.......(ii)
Given equation is
x2+xy+y2=8
Substituting (i) and (ii)
⇒(x′√3−y′)2+(x′√3−y′)(x′√3+y′)+(x′√3+y′)2=8⇒x′23+y′2−2√3x′y′+x′23+x′y′√3−x′y′√3−y′2+x′23+y′2+2√3x′y′+x′23=8⇒x′2+y′2=8