Formula:
1. tan2θ+1=sec2θ
2. ∫secθdθ=ln|secθ+tanθ|
Given,
∫211x√4+x2dx
Let x=1u
Then, dx=−1u2du
Upper limit: u=12=0.5
Lower limit: u=1
Substituting these values in the above integral we get,
∫0.51−11u√4+1u2.1u2du
⇒∫0.51−u2√4u2+1.1u2du
⇒∫0.51−du√4u2+1
Let 2u=tanθ
Then, du=12sec2θ
Now, the integral becomes:
Let I=∫−12sec2θ√tan2θ+1dθ
⇒I=∫−12sec2θsecθdθ
⇒I=∫−12secθ
Using Formula 2, we get
I=−12ln|secθ+tanθ|
Since, tanθ=2u
secθ=√1+tan2θ=√1+4u2
therefore, I=−12ln|2u+√4u1+1|
Substituting the upper and lower limits of u, we obatin
I0.51=−12|ln(2u+√4u2+1)|0.51
=−12[ln(1+√2)−ln(2+√5)]
=12[ln(2+√5)−ln(1+√2)]
=12ln(2+√51+√2)