wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Transform the integral
211x4+x2dx
by means of the substitution x=1u. Hence, by means of further substitution, or otherwise, evaluate the integral.

Open in App
Solution

Formula:
1. tan2θ+1=sec2θ

2. secθdθ=ln|secθ+tanθ|

Given,

211x4+x2dx

Let x=1u

Then, dx=1u2du

Upper limit: u=12=0.5

Lower limit: u=1

Substituting these values in the above integral we get,

0.5111u4+1u2.1u2du

0.51u24u2+1.1u2du

0.51du4u2+1

Let 2u=tanθ

Then, du=12sec2θ

Now, the integral becomes:

Let I=12sec2θtan2θ+1dθ

I=12sec2θsecθdθ

I=12secθ

Using Formula 2, we get

I=12ln|secθ+tanθ|

Since, tanθ=2u

secθ=1+tan2θ=1+4u2

therefore, I=12ln|2u+4u1+1|

Substituting the upper and lower limits of u, we obatin

I0.51=12|ln(2u+4u2+1)|0.51

=12[ln(1+2)ln(2+5)]

=12[ln(2+5)ln(1+2)]

=12ln(2+51+2)


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios of Allied Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon