Let a point with respect to old axis be
(x,y)Let the same point with respect to new axis be (x′,y′)
If the new axis is formed by rotating old axis by an angle θ then,
x=x′cosθ−y′sinθ
y=x′sinθ+y′cosθ
So, here θ=45∘
cos45∘=1√2 and sin45∘=1√2
So, x=x′√2−y′√2
and, y=x′√2+y′√2
(1) Putting the value of x and y in x2−y2=a2, we get
(x′22+y′22−x′y′)−(x′22+y′22+x′y′)=a2
or, 2x′y′+a2=0
(2) Putting the value of x and y in 17x2−16xy+17y2=225, we get
17(x′22+y′22−x′y′)−16((x′√2−y′√2)(x′√2+y′√2)+17(x′22+y′22+x′y′))=225
or, 17(x′2+y′2)−16(x′22−y′22)=225
or, 9x′2+25y′2=225
(3)y4+x4+6x2y2=2 can be written as,
(x2−y2)2+8x2y2=2
Putting the value of x and y in (x2−y2)2+8x2y2=2,we get
((x′22+y′22−x′y′)−(x′22+y′22+x′y′))2+8(x′22+y′22−x′y′)(x′22+y′22+x′y′)=2
or, (−2x′y′)2+8(x′44+y′44−x′2y′22)=2
or, 4x′2y′2+2x′4+2y′2−4x′2y′2=2
or, x′4+y′4=1