r12=α12sinθ2 .... (i)
Squaring the given equation, we get
r=αsin2θ2
2sin2θ2=1−cosθ
Using this result in above equation
⇒r=α(1−cosθ)×12
⇒2r=α(1−xr) ...... [∵x=rcosθ]
⇒2r2=α(r−x)
⇒2(x2+y2)=α(r−x)
⇒2(x2+y2)+αx=αr
Squaring both sides
⇒4(x2+y2)2+(αx)2+4αx(x2+y2)=α2(x2+y2)
⇒4(x2+y2)2+4αx(x2+y2)=α2y2