The correct option is B p=2, q=−3
Given equation,
2x2+3xy+4y2+x+18y+25=0 ........(i)
Transforming to parallel axes through a point (p,q)
∴2(x+p)2+3(x+p)(y+q)+4(y+q)2+(x+p)+18(y+q)+25=0 [replace x by p+x and y by y+q in equation(i)]
⇒2(x2+p2+2px)+3(xy+xq+py+pq)+4(y2+q2+2yq)+x+p+18y+18q+25=0
⇒2x2+4y2+3xy+4px+3qx+x)+(3py+8qy+18y)+2p2+4q2+3pq+p+18q+25=0
⇒2x2+4y2+3xy+(4p+3q+1)x+(3p+8q+18)y+2p2+4q2+3pq+p+18q+25=0
Comparing with equation
2x2+4y2+3xy=1
we get, 4p+3q+1=0......(ii)
and 3p+8q+18=0........(iii)
Solving (ii) and (ii), we get values of p and q.
From [3×equation(ii)] −[equation(iii)×4]
⇒12p+9q+3−12p−32q−72=0
⇒−23q−69=0
⇒−23q=69
⇒q=−6923
∴q=−3
Substitute q=−3 in equation 4p+3q+1=0, we get
⇒4p+3(−3)+1=0
⇒4p−9+1=0
⇒4p−8=0
⇒4p=8
∴p=2
Hence, p=2, q=−3