△ABC is an isosceles triangle in which AB = AC. Side BA is produced to D such that AD = AB. ∠BCD is equal to ____.
90∘
Given, AB = AC and BA = AD.
In △ABC,
∠ABC=∠ACB=x (angles opposite to equal sides)
In △ACD,
∠ADC=∠ACD=y (angles opposite to equal sides)
∴∠BCD=x+y
In △ABC,
∠ABC+∠ACB+∠BAC=180∘ (angle sum property of a triangle)
x+x+∠BAC=180∘
∠BAC=180∘−2x
∠BAC+∠DAC=180∘ (Linear pair)
(180∘−2x)+∠DAC=180∘
So, ∠DAC=2x
In △DAC,
∠DAC+∠ADC+∠ACD=180∘ (angle sum property of a triangle)
2x+y+y=180∘
2x+2y=180∘
x+y=90∘
∠BCD=∠BCA+∠ACD
= x+y
= 90∘
∴∠BCD=90∘