The correct option is C 70∘
In the given figure,
∠APB=40∘
Now, in quadrilateral ORPT,
∠ORP=∠OTP=90∘ (Angle between tangent and the radius)
Hence, ∠TPR+∠ROT=180 (Angle sum property)
40+∠ROT=180
∠ROT=140∘
Now, join OQ.
In △OQB and △OBR
∠OQB=∠ORB (Each 90)
OB=OB (Common)
OQ=OR (Radius of circle)
thus, △OQB≅△ORB(SAS rule)
Hence, ∠QOB=∠ROB=x
Similarly, ∠QOA=∠TOA=y
We know, ∠TOA=140
∠QOB+∠ROB+∠TOA+∠QOA=140
2(x+y)=140
x+y=70∘
∠AOB=70∘