In ΔPZX and ΔPQR
∠P=∠P (∵common)
∠PZX=∠PQR=90° (given)
By AA similarity ΔPZX≈ΔPQR → (1)
In ΔXZQ and ΔPXQ
∠XZQ=∠PXQ (90°each)
∠ZQX=∠PQX (∵common)
By AA similarity, ΔXZQ≈ΔPXQ → (2)
In ΔPQR and ΔPXQ
∠PQR=∠PXQ (∵each 90°)
∠P=∠P (∵common)
By AA similarity, ΔPQR ≈ΔPXQ → (3)
From eq (1),(2) and (3) transitivity property
ΔPZX≈ΔXZQ
Hence, AA similarity postulates,
⇒ PZZX=ZXZQ⇒ZX2=PZ×ZQ
Hence, proved