1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Derivative of One Function w.r.t Another
Trigonometric...
Question
Trigonometric Inverse Circular Function
Q. Prove that :
c
o
t
-
1
1
2
-
1
2
c
o
t
-
1
4
3
=
π
4
Open in App
Solution
Hi
,
cot
-
1
1
2
-
1
2
cot
-
1
4
3
=
π
4
It
can
be
written
as
2
cot
-
1
1
2
-
cot
-
1
4
3
=
π
2
Now
LHS
,
2
cot
-
1
1
2
-
cot
-
1
4
3
=
2
tan
-
1
2
-
tan
-
1
3
4
Since
cot
-
1
x
=
tan
-
1
1
x
=
tan
-
1
2
×
2
1
-
2
2
-
tan
-
1
3
4
=
tan
-
1
4
-
3
-
tan
-
1
3
4
since
2
tan
-
1
x
=
tan
-
1
2
x
1
-
x
2
=
π
-
tan
-
1
4
3
-
tan
-
1
3
4
since
tan
-
1
-
x
=
π
-
tan
-
1
x
=
π
-
tan
-
1
4
3
+
tan
-
1
3
4
=
π
-
tan
-
1
4
3
+
3
4
1
-
4
3
×
3
4
=
π
-
tan
-
1
∞
=
π
-
π
2
=
π
2
=
RHS
Suggest Corrections
1
Similar questions
Q.
Inverse trigonometric functions have restricted domain and range, [.]
and |.| denotes greatest integer function and modulus function respectively, then
I
n
v
e
r
s
e
T
r
i
g
o
n
o
m
e
t
r
i
c
D
o
m
a
i
n
R
a
n
g
e
F
u
n
c
t
i
o
n
y
=
s
i
n
−
1
x
x
ϵ
[
−
1
,
1
]
y
ϵ
[
−
π
2
,
π
2
]
y
=
c
o
s
−
1
x
x
ϵ
[
−
1
,
1
]
y
ϵ
[
0
,
π
]
y
=
t
a
n
−
1
x
x
ϵ
R
y
ϵ
(
−
π
2
,
π
2
)
y
=
c
o
t
−
1
x
x
ϵ
R
y
ϵ
(
0
,
π
)
y
=
s
e
c
−
1
x
x
ϵ
R
−
(
−
1
,
1
)
y
ϵ
[
0
,
π
]
−
{
π
2
}
y
=
c
o
s
e
c
−
1
x
x
ϵ
R
−
(
−
1
,
1
)
y
ϵ
[
−
π
2
,
π
2
]
The
solution set for
[
c
o
t
−
1
x
]
2
−
6
[
c
o
t
−
1
x
]
+
9
≤
0
, is
Q.
What is inverse trigonometric functions?
Q.
Prove the following trigonometric identities.
If cosec θ + cot θ = m and cosec θ − cot θ = n, prove that mn = 1