If dydx+y2x=y, then kx=e1/v=ex/y (Enter 1 if true or 0 otherwise)
Open in App
Solution
Given, xdydx+y2x=y. dydx+(yx)2=yx Let y=vx⇒dydx=v+xdvdx ∴v+xdvdx+v2=v⇒−dvv2=dxx Integrating we get 1v=logx+logk=log(kx), where k is integration constant. ⇒kx=e1/v=ex/y