Try to prove the following using the general principle.
(i) (x − y) + z = x − (y − z) for all numbers x, y, z
(ii) (x + y) − z = x + (y − z) for all numbers x, y, z
(i)
To show: (x − y) + z = x − (y − z) for all numbers x, y, z.
We know that (x + y) + z = x + (y + z) for all numbers x, y, z. ….(i)
Now, (x − y) + z = (x + (−y)) + z
= x + ((−y) + z) (Using (i))
= x + (−y + z)
= x − (y − z)
Thus, (x − y) + z = x − (y − z) for all numbers x, y, z.
(ii)
To show: (x + y) − z = x + (y − z) for all numbers x, y, z.
We know that (x + y) + z = x + (y + z) for all numbers x, y, z. ….(i)
Now, (x + y) − z = (x + y) + (−z)
= x + (y + (−z)) (Using (i))
= x + (y − z)
Thus, (x + y) − z = x + (y − z) for all numbers x, y, z.