Two adjacent angles of a parallelogram are (3x−4)∘ and (3x+16)∘. Find the value of x and hence find the measure of each of its angles.
In || gm ABCD, ∠A ∠B are two adjacent angles
Let ∠A=(3x−4)∘ and ∠B=(3x+16)∘
But ∠A+∠B=180∘
⇒(3x−4)∘+(3x+16)=180∘⇒3x−4∘+3x+16=180∘⇒6x+12∘=180∘⇒6x=180∘−12∘⇒6x=168⇒x=1686=28∘∴x=28∘Now ∠A=3x−4=3×28∘−4∘=84∘−4∘=80∘∠B=3x+16=3×28+16=84∘+16∘=100∘But ∠C=∠A opposite angles of||gm∴∠C=80∘Similarly∠D=∠B=100∘Hence∠A=80∘,∠B=100∘,∠C=80∘ and ∠D=100∘