CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon


Question

Two adjacent angles of a parallelogram are in the ratio $$4:5$$, Find all the angles of the parallelogram


A
C=A=90o,D=B=100o
loader
B
C=A=80o,D=B=100o
loader
C
C=A=D=B=90o
loader
D
None of above
loader

Solution

The correct option is B $$\angle C = \angle A = 80^o, \angle D =\angle B = 100^o$$
Let $$ABCD$$ be a parallelogram.
Given that, $$\angle A:\angle B=4:5$$
Sum of the ratios $$=4+5=9$$
But, $$\angle A+\angle B=180^o$$
(Adjacent angles of the parallelogram, $$ABCD$$)
$$\therefore \angle A=\dfrac {4}{9}\times 180^o=80^o$$
$$\angle B=\dfrac {5}{9}\times 180^o=100^o$$
So $$\angle C = \angle A = 80^o, \angle D =\angle B = 100^o$$
(Opposite angles of a parallelogram are equal). 

Maths

Suggest Corrections
thumbs-up
 
0


similar_icon
Similar questions
View More


similar_icon
People also searched for
View More



footer-image