Two AMs A1 and A2, two GMs G1 and G2 and two HMs H1 and H2 are inserted between two numbers a and b, then
1H1 + 1H2 equals.
If a,b,c,d are in A.P, a+d = b+c
If a,b,c,d are in G.P, ad =bc
a, H1 , H2, b are in H.P
⇒ 1a′,1H′,1H′2,1b are in A.P
⇒ 1a + 1a = 1H1 + 1H2
⇒ 1H1 + 1H2 = a+bab-----------------(1)
a, A1 , A2, b are in A.P
⇒ a+b = A1 + A2
a, G1 , G2, b are in G.P
⇒ ab = G1 G2
Substituting in (1), 1H1 + 1H2 = A1+A2G1G2