The correct option is
B 0.8t+0.12 sin10tFrom fig, we can say an extension of spring
(x2−x1)A reduced mess of the system μ=mA×mBmA+mB=3×23+2=1.2kg
Angular frequency of oscillation
ω=√kμ=√12012=10rad|s
∴ displacement
x=x0sin(10t) here x=xA−xB
Here xA−xB=x0sin(10t)...(1)
The velocity of C.O.M of the system
vcm=mA.vA+mB.vBmA+mB=2×2+3×02+3=0.8m/s=constant
∴ Displacement of c.m. in time 't' is
xcm=vcmt⇒xcm=0.8t
But xcm=2xA+3xB2+3∴2xA+3xB5=0.8t⇒2xA+3xB=4t→(iii)
Solving (1)(2) we get
5xA=3x0sin(10t)+4t⇒xA=0.60x0sin(10t)+0.8t
Now we need to find out x0(max.extention od spring)
At point of max .extention the velocity of two block is vcm=0.8m/s
Fromenergy conservation
12×mA×v2A=12×x×x20+12×mA×v2cm+12mB×v2cm⇒12×2×22=12×120×x20+12×2×0.82+12×3×0.82⇒60x20=42−0.69−0.96⇒x20=2.460=0.04⇒x0=0.2mxA=0.2sin(10t)+0.8t