Two blocks of masses m1 and m2 are connected with a massless unstretched spring and placed over a plank moving with an acceleration a as shown in the figure. The coefficient of friction between the blocks and the platform is μ.
A
Spring will be stretched if a>μg
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
Spring will be compressed if a≤g
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
Spring will neither be stretched nor be compressed for a≤g
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
Spring will be in its natural length under all conditions
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D Spring will be in its natural length under all conditions FBD of the planck
FBD of the blocks (from the frame of reference of the planck)
m1a and m2a are the pseudoforces acting on the two blocks.
Case (i) a>μg Then, m1a−μm1g=m1a′−−(I)m2a−μm2g=m2a′′−−(II)
Solving (I) and (II), a′=a′′=a−μg
Since both the blocks move with the same acceleration w.r.t the planck, the spring will be at its natural length.
Case (ii) 0<a<μg
In this case, friction force will balance the pseudo-force and hence the blocks will remain stationary w.r.t each other. So, again the spring will be at its natural length
Thus, we can conclude that the spring will be at its natural length under all conditions.