The correct option is A 0.37
Let X denotes the numbr of kings in a draw of two cards. X is a random variable which can assume the values 0,1 or 2
Now, P(X=0)=P (no king)=48C252C2=48!2!(48−2)!52!2!(52−2)!=4852× 4751=188221
P(X=1)=P (no king and one king)=4C1 48C152C2=4×48×252×51=32221
and P(X=2)=P (two king)=4C252C2=4×352×51=1221
Thus, the probability distribution of X is
X012P(X)188221322211221
Mean of X=E(X)=n∑i=1xip(xi)
=0×188221+1×32221+2×1221=34221
E(X2)=n∑i=1x2ip(xi)
=02×188221+12×32221+22×1221=36221
Var(X)=E(X2)−(E(X))2=36221−(34221)2=6800(221)2
Therefore σx=√Var(X)=√6800221=0.37