Total number of cards in a deck =52
Number of ace cards =4
Let X: Number of ace cards
Possibilites of getting 2 ace cards or 1 ace card or 0 ace card
Hence, X=0,X=1 & X=2
P(X=0)=P(non-ace and non-ace)
P(X=0)=P(non-ace)×P( non-ace)
P(X=0)=4852×4852=144169
P(X=1)=P(ace and non-ace or non-ace and ace)
P(X=1)=P(ace and non-ace and non-ace)+P(non-ace and ace)
P(X=1)=P(ace).P(non-ace)+P(non-ace).P(ace)
P(X=1)=452×4852+4852×452=24169
P(X=2)=P(ace and ace)
P(X=2)=452×452=1169
Thus, the required probability distribution is
X012P(X)144169241691169