Two cards are drawn with replacement from a well shuffled deck of 52 cards. Find the mean and variance for the number of aces.
Open in App
Solution
Let X denote the number of aces drawn in drawing two cards with replacement. ∴X can take the values 0,1 and 2. Let P(S)=P (getting aces) =452⇒P(F) =P (not getting aces) =4852 P(X=0)=P(noace)=P(FF)=P(F) P(F)=4852⋅4852=144169 P(X=1)=P (one ace) =P(SForFS)=P(S).P(F)+P(F)P(S) =2(PS).P(F)=2×452×4852=24169 P(X−2)=P (two aces) =P(SS)=P(S). P(S)=452⋅452=1169
X
0
1
2
P(X=x)
=144169
24169
1169
Mean =E[X]=∞∑−∞xipi=(0)(144169)+(1)(24169)+(2)(1169) =24+2169=26169=213 E(X2)=2∑x=0x2ipi=(02)(144169)+(12)(24169)+(22)(1169) =24+4169=28169 Variance (X)=E[X2]−(E(X))2 =28169−(213)2=28169−4169=24169