The correct option is C 8√2×10−5 Nm
Given,
magnitude of charges, q=4 μC
electric field, →E=0.20ˆi Vcm−1=20 ˆiVm−1
position vector of point A,
rA=1ˆi+0ˆj+4ˆk
position vector of point B,
rB=2ˆi−1ˆj+5ˆk
We know that torque due to equal and opposite charges,
→τ=→p×→E=q(2→a)×→E...(1)
Here,→p=q(2→a) is dipole moment.
Since, the direction of dipole is from negative to positive.
Therefore,
2→a=→rB−→rA
⇒2→a=(2−1)ˆi+(−1−0)ˆj+(5−4)ˆk
⇒2→a=ˆi−ˆj+ˆk
Substituting the values in the above equation,
⇒→τ=(4×10−6)[(ˆi−ˆj+ˆk)×20ˆi]
⇒→τ=8×10−5(ˆk+ˆj)
Magnitude of torque is
τ=√(8×10−5)2+(8×10−5)2
∴τ=8√2×10−5 Nm
Hence, option (c) is the correct answer.