Two chords AB and AC of a circle subtends angles equal to 80∘ and 140∘ respectively at the centre. Find ∠BAC.
AXB, AYB
In ΔBOA,
OB=OA [radii]
∠OAB=∠OBA ... (i) [angles opposite to equal sides are equal]
In ΔOAB,
∠OBA+∠OAB+∠AOB=180∘ [angle sum property of a triangle]
⇒∠OAB+∠OAB+80∘=180∘
⇒2∠OAB=180∘−80∘
⇒∠OAB=50∘
Now, in ΔAOC,
AO=OC [radii]
∴∠OCA=∠OAC ... (ii) [angles opposite to equal sides are equal]
Also,
∠AOC+∠OAC+∠OCA=180∘ [angle sum property of a triangle]
⇒140∘+2∠OAC=180∘ [from (ii)]
⇒2∠OAC=180∘−140∘
⇒∠OAC=20∘
∴∠BAC=∠OAB+∠OAC=50∘+20∘=70∘