Two chords AB and AC of a circle subtends angles equal to 90∘ and 150∘ respectively at the centre. Find ∠BAC.
Open in App
Solution
In ΔBOA, OB=OA [radii] ∠OAB=∠OBA ... (i) [angles opposite to equal sides are equal]
In ΔOAB, ∠OBA+∠OAB+∠AOB=180∘ [angle sum property of a triangle] ⇒∠OAB+∠OAB+90∘=180∘ ⇒2∠OAB=180∘−90∘ ⇒∠OAB=45∘
Now, in ΔAOC, AO=OC [radii] ∴∠OCA=∠OAC ... (ii) [angles opposite to equal sides are equal]
Also, ∠AOC+∠OAC+∠OCA=180∘ [angle sum property of a triangle] ⇒150∘+2∠OAC=180∘ [from (ii)] ⇒2∠OAC=180∘−150∘ ⇒∠OAC=15∘ ∴∠BAC=∠OAB+∠OAC=45∘+15∘=60∘