Two chords AB and AC of a circle subtends angles equal to 90∘ and 150∘ respectively at the centre. Find ∠BAC.
60∘
In ΔBOA,
OB=OA [radii]
∠OAB=∠OBA ... (i) [angles opposite to equal sides are equal]
In ΔOAB,
∠OBA+∠OAB+∠AOB=180∘ [angle sum property of a triangle]
⇒∠OAB+∠OAB+90∘=180∘
⇒2∠OAB=180∘−90∘
⇒∠OAB=45∘
Now, in ΔAOC,
AO=OC [radii]
∴∠OCA=∠OAC ... (ii) [angles opposite to equal sides are equal]
Also,
∠AOC+∠OAC+∠OCA=180∘ [angle sum property of a triangle]
⇒150∘+2∠OAC=180∘ [from (ii)]
⇒2∠OAC=180∘−150∘
⇒∠OAC=15∘
∴∠BAC=∠OAB+∠OAC=45∘+15∘=60∘