Two chords AB and AC of a circle subtends angles equal to 90∘ and 150∘ respectively at the centre. Find ∠BAC, if AB and AC lie on the opposite sides of the centre.
60∘
In ΔBOA,
OB = OA [radii]
∠OAB=∠OBA . . . . (i)
[angles opposite to equal sides are equal]
In ΔOAB,
∠OBA+∠OAB+∠AOB=180∘
[angle sum property of a triangle]
⇒∠OAB+∠OAB+90∘=180∘
⇒2∠OAB=180∘−90∘
⇒∠OAB=45∘
Now, in ΔAOC,
AO = OC [radii]
∴∠OCA=∠OAC
[angles opposite to equal sides are equal]
Also,
∠AOC+∠OAC+∠OCA=180∘
[angle sum property of a triangle]
⇒150∘+2∠OAC=180∘ [from Eq. (ii)]
⇒2∠OAC=180∘−150∘
⇒∠OAC=15∘
∴∠BAC=∠OAB+∠OAC=45∘+15∘=60∘