Two chords PQ and MN of length 11 cm and 5 cm respectively of a circle are parallel to each other and are one the opposite sides of its centre. If the distance between chord MN and chord PQ is 6 cm find the radius of the circle
A
10√52cm
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
5√54cm
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
5√52cm
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
5√102cm
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C5√52cm Given−Oisthecentreofacirclewithradius=r.PQ&MNaretwoparallelchordswhenPQ=11cmandMN=5cm.ThedistanceABbetweenPQ&MN,throughthecentreis6cm.Tofindout−r=?Solution−ThelineABistheperpendicuardistancebtweenPQ&MN.AtthesametimeOA&OBarethedistancesofPQ&MNfromthecenterO.∴∠OAQ=∠OBN=90osincetheperpediculardistanceofachordfromthecentrebisectsthechordatrightangle.i.eΔOAQ&ΔOBNarerighttriangleswithhypotenusesasOQ=randON=rrespectively.AlsoOA=112cmandOB=52cm.LetustakeOA=x.ThenOB=AB−OA=6−x.Then,applyingPythagorastheorem,wehaveOA2+AQ2=r2andOB2+BN2=r2.∴OA2+AQ2=OB2+BN2⟹x2+(112)2=(6−x)2+(52)2⟹x=1.∴r=√OA2+AQ2=√x2+(112)2=√12+(112)2cm=5√52cm.Ans−OptionC.