Tangent Perpendicular to Radius at Point of Contact
Two circles o...
Question
Two circles of radii 5 cm and 3 cm intersect at two points and the distance between their centres is 4 cm. The length of common chord is
A
6 cm
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
4 cm
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
12 cm
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
8 cm
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B 6 cm Given−A&Baretwointersectingcircles,thecomonchordofwhichisCD.CDintersectsABorextendedABatE.AB=4cm,radiusofthecirclewithcentreAisAC=5cmandradiusofthecirclewithcentreBisBC=3cm.Tofindout−ThelengthofthecommonchordCD.Solution−∠AEC=90osincethelinejoiningthecentresofoftwointersectingcirclesisperpendiculartotheircommonchord.Sowehavetworighttriangles,ΔACE&ΔBCEwithhypotenusesAC&BCrespectively.LetBE=xcm.ThenAE=(4+x)cmandBE=xcm.∴ByPythagorastheorem,wegetCE=√AE2−AC2=√BC2−BE2⟹√52−(4+x)2=√32−x2⟹x=0.i.eB&Earesamepoint.∴AB=AE=4cm.SoCE=√AE2−AC2=√52−(4+0)2cm=3cm.NowCD=2CEsincethelinejoiningthecentresofoftwointersectingcirclesbisectsthecommonchord.∴ThelengthofthecommonchordCD=2×3cm=6cm.Ans−OptionA.