Two circles of radii 8cm and 3cm have their centres 13cm apart. The length of a direct common tangent to the two circles is
A
12cm
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
24cm
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
18cm
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
13cm
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A12cm ABIsthecommontangentoftwocircles,whotoucheachother.ThecentreofonecircleisPwithradius=3cmandthecentreofanothercircleisQwithradius=8cm.Solution−WejoinPQ,AP&PQ.AperpendicularPNisdroppedfromPtoBQatN.Now(AP&BQ)⊥ABsincetheradiusthroughthepointofcontactofatangenttoacircleisperpendiculartothetangent.∴∠PAB=90o=∠QBA.Also∠PNB=∠PNQ=90osincePN⊥PQ.∴ABNPisarectangle.SoBN=AP=3cmandPN=AB.∴NQ=BQ−BN=(8−3)cm=5cm.AgainPQ=13cm.∴ΔPQBisarighttrianglewithPQashypotenuse.∴ByPythagorastheorem,wegetPN=√PQ2−NQ2=√132−52cm=12cm.∴PN=AB=12cm.Ans−OptionB.