Two circles of unit radius touch each other and each of them touches internally a circle of radius 2 units, as shown in the following figure. The radius of the circle which touches all the three circles is
A
5
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
32
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
23
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C23 Given−C&Aarecentresoftwocirclesofradii=1unitandtheytouchatB.Thesetwocirclesinternallytouchanothercirclewhoseradiusis2unitsi.ediameter=2×2units=4units..ThereisathirdcirclewithcentreasOandittouchesallthethreepreviouscircles.Tofindout−theradius=rofthecirclewithcentreO.Solution−BD=2AD=2×1unit=2units.NowBE&BDaresamestraightlinesincewhentwocirclestoucheachotherthenthelinejoiningthecentreswillpassthroughthepointofcontact.ButED=BE+AD=(2+2)units=4unitswhichisthediameteroftheenclosingcircle.NowBTisthecommontangetofthecircleswithcentresA&C.∴BT⊥ED.i.eΔOABisarightonewithhypotenuseasOA=1+r.(OAwillpassthroughPsincethesecirclestouchatP)AlsoBTistheradiusoftheenclosingcircle.i.eBT=2unitsandOB=BT−OT=2−r.So,applyingPythagorastheoreminΔOAB,wehaveOA2=OB2+AB2⟹(1+r)2=(2−r)2+(1)2⟹4−4r=2r⟹r=23unit.Ans−OptionC.