The correct option is A 9 cm, 6 cm
Let radius of circle A be r1 and radius of circle B be r2
Given, r1+r2=15 -------(i)
and πr12+πr22=117π
⇒r12+r22=117 ------(ii)
(i)⇒r1+r2=15
⇒r1=15−r2
Now, putting this value in (ii), we get
⇒(15−r2)2+r22=117
⇒152−2×15×r2+r22+r22=117
⇒225−30r2+2r22=117
⇒2r22−30r2+108=0
⇒2r22−18r2−12r2+108=0
⇒2r2(r2−9)−12(r2−9)=0
⇒(r2−9)(2r2−12)=0
⇒r2=9 or r2=122=6
⇒r1=15−9 or r1=15−6
⇒r1=6 or r1=9
⇒r1>r2
Thus, the radius of the two circles are 9 cm and 6 cm.